
INDECOMPOSABILITY OF VARIOUS PROFINITE

GROUPS ARISING FROM HYPERBOLIC CURVES

ARATA MINAMIDE

Abstract. In this paper, we prove that the étale fundamental group of
a hyperbolic curve over an arithmetic field [e.g., a finite extension field of
Q or Qp] or an algebraically closed field satisfies the indecomposability
[i.e., cannot be decomposed into the direct product of nontrivial profi-
nite groups]. Moreover, in the case of characteristic zero, we also prove
that the étale fundamental group of the configuration space of a curve of
the above type is indecomposable. Finally, we consider the topic of in-
decomposability in the context of the theory of combinatorial anabelian
geometry and pose the question: Is the Grothendieck-Teichmüller group
GT indecomposable? We give an affirmative answer to a pro-l version
of this question.
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Introduction

In this paper, we study the indecomposability of various profinite groups.
The term indecomposability is defined as follows [cf. Definition 1.1]:

We shall say that a profinite group G is indecomposable if,
for any isomorphism of profinite groups G ∼= G1×G2, where
G1, G2 are profinite groups, it follows that either G1 or G2

is the trivial group.

In the “zero-dimensional” case, i.e., the case of the absolute Galois group
Gk of a field k, the following fact is known [cf. Theorem 1.2]:
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Fact. (Haran-Jarden [cf. [6], Corollary 2.5]) Let k be a Hilbertian field [cf.
[FJ], Chapter 12]. Then Gk is indecomposable.

In particular, the absolute Galois group of a finitely generated (respectively,
finitely generated transcendental) extension field of Q (respectively, Qp or
Fp) is indecomposable [cf. Corollary 1.4]. Note that any p-adic local field
[i.e., a finite extension field of Qp] is non-Hilbertian [cf. Remark 1.3], but
whose absolute Galois group is also indecomposable [cf. Proposition 1.6].

In this paper, we treat the “positive-dimensional” case. In the following,
for a connected noetherian scheme (−), we shall write Π(−) for the étale
fundamental group of (−) [for some choice of basepoint]. Now we consider
the case of étale fundamental groups of smooth [hyperbolic] curves. First,
we prove the following theorem [cf. Theorems 2.1, 2.2] which concerns the
case where the base field is algebraically closed.

Theorem A. Let k be an algebraically closed field; X a smooth curve of type
(g, r) over k such that the pair (g, r) satisfies 2g − 2 + r > 0 (respectively,
(g, r) ̸= (0, 0), (1, 0)) if the characteristic of k is zero (respectively, positive).
Then ΠX is indecomposable.

The characteristic zero case of Theorem A is shown in [20], Proposition 3.2.

Next, we consider the case that the base field is non-algebraically closed.
Let k be a field of characteristic p ≥ 0; l ̸= p a prime number. Then for the
pair (k, l), we consider the following condition:

(∗lk) For any finite extension field k′ of k, the l-adic cyclotomic character

χk′ : Gk′ → Z×
l of k′ is nontrivial.

We shall say that k is l-cyclotomically full if the pair (k, l) satisfies the
condition (∗lk) [cf. Definition 3.1].

Then we prove the following theorem [cf. Theorem 3.3]:

Theorem B. Let k be a field of characteristic p ≥ 0 such that Gk is center-
free and indecomposable; X a smooth curve of type (g, r) over k such that
the pair (g, r) satisfies 2g − 2 + r > 0 (respectively, (g, r) ̸= (0, 0), (1, 0))
if the characteristic of k is zero (respectively, positive). Suppose that there
exists a prime number l ̸= p such that k is l-cyclotomically full. Then ΠX

is indecomposable.

Next, in the case of the étale fundamental group of the configuration space
of a hyperbolic curve, we prove the following [cf. Theorem 3.4]:

Theorem C. Let n be a positive integer; k a field of characteristic zero
such that Gk is center-free and indecomposable; X a hyperbolic curve over
k; Xn the n-th configuration space associated to X. Suppose that either k
is algebraically closed, or l-cyclotomically full for a prime number l. Then
ΠXn is indecomposable.

For instance, Theorems B and C imply the following [cf. Corollary 3.7]:
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Corollary D. Let n be a positive integer; k a field; X a smooth curve of type
(g, r) over k such that the pair (g, r) satisfies 2g − 2 + r > 0 (respectively,
(g, r) ̸= (0, 0), (1, 0)) if the characteristic of k is zero (respectively, positive);
Xn the n-th configuration space associated to X. Then the following hold:

(i) If k is a finitely generated transcendental extension field of Fp, then
ΠX is indecomposable.

(ii) If k is a finitely generated extension field of either Q or Qp, then
ΠXn is indecomposable.

Theorem C also implies the following geometric result [cf. Theorem 3.8]:

Theorem E. Let n be a positive integer; k a field of characteristic zero; X
a hyperbolic curve over k; Xn the n-th configuration space associated to X.
Suppose that there exists an isomorphism of k-schemes

Xn
∼→ Y ×k Z

— where Y , Z are k-varieties [i.e., schemes that are of finite type, separated,
and geometrically integral over k]. Then it follows that either

Y ∼= Spec(k) or Z ∼= Spec(k).

Finally, we consider the Grothendieck-Teichmüller group GT [cf. Defi-
nition 4.1]. One fundamental problem in the theory of GT is the issue of
whether or not the well-known injection

GQ ↪→ GT

is, in fact, bijective. On the other hand, from the point of view of the theory
of combinatorial anabelian geometry [cf., e.g., [18], [10], [11], [12]], we recall
that it is stated in [12], Introduction, that:

“By contrast, one important theme of the present series of
papers lies in the point of view that, instead of pursuing the
issue of whether or not GT is literally isomorphic to GQ, it is
perhaps more natural to concentrate on the issue of verifying
that GT exhibits analogous behavior/properties to GQ [or
Q].”

From this point of view, it is natural to pose the following question:

Is GT indecomposable?

[Note that GQ is indecomposable [cf. the above Fact].] In this paper, we
give an affirmative answer to a pro-l version of this question. More precisely,
we prove the following result [cf. Theorem 4.4]:

Theorem F. Let l be a prime number. Then the pro-l Grothendieck-
Teichmüller group GTl [cf. Definition 4.1] is indecomposable.

The present paper is organized as follows: In §1, we review various proper-
ties of absolute Galois groups. Also, we prove a [profinite] group-theoretic
result [cf. Proposition 1.7] which is needed in §3. In §2, we prove the inde-
composability of the geometric fundamental group of a smooth [hyperbolic]
curve [cf. Theorem A]. In §3, by applying the results of §1 and §2, we prove
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Theorems B, C and Corollary D. Moreover, as an application of Theorem
C, we conclude Theorem E. Finally, in §4, after reviewing the definitions of
GT and GTl, we verify Theorem F as a consequence of a certain anabelian
result over finite fields [cf. [7], Remark 6, (iv)].

Acknowledgements: I would like to thank Professors Shinichi Mochizuki
and Yuichiro Hoshi for their suggestions, many helpful discussions, and warm
encouragement.

0. Notations and Conventions

In this paper, we follow the terminology and conventions of [20], §0,
“Topological Groups”, “Curves”; [19], Definition 1.1, (ii), (iii).

Fields: A finite extension field of Q (respectively, Qp) will be referred to as
a number field (respectively, p-adic local field).

Topological groups: Let G be a Hausdorff topological group, and H ⊆ G
a closed subgroup. Let us write ZG(H) for the centralizer of H in G. We

shall write Z(G)
def
= ZG(G) for the center of G.

We shall say that a profinite group G is elastic if it holds that every
topologically finitely generated closed normal subgroup N ⊆ H of an open
subgroup H ⊆ G of G is either trivial or of finite index in G. If G is elastic,
but not topologically finitely generated, then we shall say that G is very
elastic.

We shall say that a profinite group G is slim if for every open subgroup
H ⊆ G, the centralizer ZG(H) is trivial. A profinite group G is slim if and
only if every open subgroup of G has trivial center [cf. [16], Remark 0.1.3].
It is easily verified that every finite closed normal subgroup N ⊆ G of a slim
profinite group G is trivial.

Let p be a prime number. Then we shall write G(p) for the maximal pro-p
quotient of a profinite group G. If G admits an open subgroup which is
pro-p, then we shall say that G is almost pro-p.

We shall write Gab for the abelianization of a profinite group G, i.e., the
quotient of G by the closure of the commutator subgroup of G.

If G is a topologically finitely generated profinite group, then one ver-
ifies easily that the topology of G admits a basis of characteristic open
subgroups. Any such basis determines a profinite topology on the groups
Aut(G), Out(G).

Let X be a connected noetherian scheme. Then we shall write ΠX for the
étale fundamental group of X [for some choice of basepoint]. For any field

k, we shall write Gk
def
= ΠSpec(k) for the absolute Galois group of k.

Curves: Let S be a scheme and X a scheme over S. If (g, r) is a pair of
nonnegative integers, then we shall say that X → S is a smooth curve of
type (g, r) over S if there exist an S-scheme X which is smooth, proper, of
relative dimension 1 with geometrically connected fibers of genus g, and a
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closed subscheme D ⊆ X which is finite étale of degree r over S such that
the complement of D in X is isomorphic to X over S.

We shall say that X is a hyperbolic curve over S if there exists a pair (g, r)
of nonnegative integers with 2g − 2 + r > 0 such that X is a smooth curve
of type (g, r) over S. A tripod is a hyperbolic curve of type (0, 3).

Let X → S be a smooth curve of type (g, r), and Pn the fiber product of
n copies of X over S. Then we shall refer to as the n-th configuration space
associated to X the S-scheme Xn which represents the open subfunctor

T 7→ {(f1, . . . , fn) ∈ Pn(T ) | fi ̸= fj if i ̸= j }
of the functor represented by Pn [cf. [7], Definition 2.1, (i), (ii)].

1. Indecomposability of Absolute Galois Groups

In this section, we review various properties of absolute Galois groups.
Also, we prove a [profinite] group-theoretic result [cf. Proposition 1.7] which
is needed in §3.

Definition 1.1. (cf. [20], Definition 3.1) We shall say that a profinite group
G is indecomposable if, for any isomorphism of profinite groups G ∼= G1×G2,
where G1, G2 are profinite groups, it follows that either G1 or G2 is the
trivial group. We shall say that G is strongly indecomposable if every open
subgroup of G is indecomposable.

Theorem 1.2. Let k be a Hilbertian field [cf. [FJ], Chapter 12]. Then Gk

is very elastic, slim, and strongly indecomposable.

Proof. The very elasticity portion of Theorem 1.2 follows from [4], Lemma
16.11.5; [4], Proposition 16.11.6. Note that for any open subgroup H of

Gk, there exists a finite separable extension kH of k such that GkH
∼→ H.

Here, by [4], Corollary 12.2.3, kH is also a Hilbertian field. Thus, to ver-
ify the slimness and the strong indecomposability portions of Theorem 1.2,
it suffices to show that Gk is center-free and indecomposable. But this
center-freeness (respectively, indecomposability) follows from [4], Proposi-
tion 16.11.6 (respectively, the theorem of Haran-Jarden [cf. [6], Corollary
2.5]). �

Remark 1.3. Let k be either a finite field or a p-adic local field. Then k
is always non-Hilbertian. Indeed, Gk is topologically finitely generated [cf.
Proposition 1.6, below; [4], Lemma 16.11.5].

Corollary 1.4. The following types of fields are Hilbertian:

(i) finitely generated extension fields of Q,

(ii) finitely generated transcendental extension fields of Qp.

(iii) finitely generated transcendental extension fields of Fp.

In particular, their absolute Galois groups are very elastic, slim, and strongly
indecomposable.
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Proof. The first statement follows from [4], Theorem 13.4.2. The last state-
ment follows from the first, together with Theorem 1.2. �

Lemma 1.5. Let G be a profinite group. If G is elastic, slim, and topolog-
ically finitely generated, then G is strongly indecomposable.

Proof. First, we note that any open subgroup of G is also elastic, slim, and
topologically finitely generated. Thus, to verify the assertion, it suffices to
show that G is indecomposable. Suppose that we have an isomorphism of
profinite groups G ∼= G1 × G2 such that G1 ̸= {1}. Then since G1 is a
nontrivial topologically finitely generated closed normal subgroup of G, [by
the elasticity of G] G1 is of finite index in G. In particular, G1 is an open
subgroup ofG. Thus, by the slimness ofG, we haveG2 ⊆ ZG(G1) = {1}. �

Proposition 1.6. Let k be a p-adic local field. Then Gk is elastic, slim,
topologically finitely generated, and strongly indecomposable.

Proof. The assertions follow from Lemma 1.5; [19], Theorem 1.7, (ii); [21],
Theorem 7.4.1. �

Proposition 1.7. Let

1 −−−−→ ∆ −−−−→ Π
p−−−−→ G −−−−→ 1

be an exact sequence of profinite groups. Then the following hold:

(i) Suppose that ∆ is indecomposable, and G is center-free and inde-
composable. Then if the natural outer Galois representation

G → Out(∆)

associated to the above exact sequence is nontrivial, then Π is also
indecomposable.

(ii) Suppose that ∆ is nontrivial and center-free, and that G is non-
trivial. Then if Π is indecomposable, then the natural outer Galois
representation

G → Out(∆)

associated to the above exact sequence is nontrivial.

Proof. (i) Suppose that Π = Π1 × Π2, where Π1, Π2 are nontrivial closed
normal subgroups of Π. Then since G is center-free, it follows from [20],
Proposition 3.3 that there exist normal closed subgroups Hi ⊆ Πi [for i = 1,

2] such that Π1/H1×Π2/H2
∼→ G. In particular, since G is indecomposable,

we obtain that either Π1/H1 = {1} or Π2/H2 = {1}. Without loss of

generality, we may assume that Π1/H1 = {1}, so Π1 = H1, Π2/H2
∼→ G.

Thus, we have Π1 ×H2
∼→ ∆.

Now I claim that H2 ̸= {1}. Indeed, suppose that H2 = {1}, so Π1
∼→ ∆,

Π2
∼→ G. Then the extension determined by the exact sequence that appears
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in the statement of Proposition 1.7 is isomorphic to the trivial extension of
G by ∆

1 −−−−→ ∆ −−−−→ ∆×G −−−−→ G −−−−→ 1.

Thus, the natural outer Galois representation G → Out(∆) induced by the
conjugation action of G on ∆ is trivial. But this contradicts the assumption
that the outer representation G → Out(∆) is nontrivial. This completes the
proof of the claim.

In light of the claim, by the indecomposability of ∆, we conclude that
Π1 = {1}, a contradiction. This completes the proof that Π is indecompos-
able.

(ii) Suppose that the representation G → Out(∆) is trivial. Here, note
that both ∆ and ZΠ(∆) are normal closed subgroups of Π. Moreover, by the
triviality of the representationG → Out(∆), it follows that Π is generated by
∆ and ZΠ(∆). Thus, since ∆ is center-free, i.e., ∆ ∩ ZΠ(∆) = Z(∆) = {1},
we obtain that Π ∼= ∆ × ZΠ(∆). Here, we note that since p(ZΠ(∆)) = G
is nontrivial, we have ZΠ(∆) ̸= {1}. Therefore, since ∆ is nontrivial, we
conclude that Π is not indecomposable, a contradiction. �

2. Indecomposability of Geometric Fundamental Groups of
Curves

In this section, we prove the indecomposability of the geometric funda-
mental group of a smooth [hyperbolic] curve.

Theorem 2.1. Let k be an algebraically closed field of characteristic zero;
X a hyperbolic curve over k. Then ΠX is elastic, slim, and topologically
finitely generated. In particular, ΠX is strongly indecomposable.

Proof. The fact that ΠX is elastic (respectively, slim; topologically finitely
generated) follows from [20], Theorem 1.5 (respectively, [20], Proposition

1.4; [23], EXPOSÉ XIII, Corollaire 2.12). In particular, the strong inde-
composability of ΠX follows from Lemma 1.5 [cf. also [20], Proposition 3.2;
[20], Remark 3.2.1]. �

Theorem 2.2. Let k be an algebraically closed field of characteristic p > 0;
X a smooth curve of type (g, r) over k such that the pair (g, r) satisfies

(g, r) ̸= (0, 0), (1, 0). Then G
def
= ΠX is strongly indecomposable.

Proof. First, we note that for any open subgroup H of G, there exists a
connected finite étale covering XH → X of X, where XH is also a curve
of type ̸= (0, 0), (1, 0) over k such that ΠXH

∼→ H. Thus, to verify the
assertion, it suffices to show that G is indecomposable. Suppose that we
have an isomorphism of profinite groups G ∼= G1 ×G2 such that G1 ̸= {1},
G2 ̸= {1}. In particular, by the slimness of G [cf. Proposition 2.4, below],
it follows that G1, G2 are infinite [cf. §0].
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Now I claim that

(∗1) there exists an open subgroup U of G such that U is [isomorphic to]
the fundamental group of a curve of genus ≥ 2.

Indeed, this fact is elementary and well-known, but we give a short proof
here for completeness. First, we consider the case where the genus of X is
0, i.e., the unique smooth compactification of X is P1

k. Here, note that if we
identify the function field of P1

k with k(t), where t is an indeterminate, then
for any Artin-Schreier equation

xp − x = tm (m ∈ Z>0, p - m),

one computes easily that the normalization of P1
k in the extension field

k(t)[x]/(xp − x − tm) of k(t) determines a finite ramified covering ϕm :
Cm → P1

k of P1
k branched only at ∞, where Cm is a smooth, proper curve

of genus (m−1)(p−1)
2 [cf., e.g., [26], Example 8.16]. Thus, for any curve X

of type (0, r), where r > 0, by taking m to be sufficiently large, we obtain
a connected finite étale covering X ′ → X of X such that the genus of X ′

is ≥ 2. Next, we consider the case where the genus of X is 1, i.e., the
unique smooth compactification of X is an elliptic curve E. Note that by
applying the Riemann-Roch Theorem to E, we obtain a finite morphism

E1
def
= E \ {p} → A1

k over k, where p ∈ E \X is a closed point of E. Next,
let us observe that it follows from the genus 0 case, which has already been
verified, that there exists a connected finite étale covering C → A1

k of A1
k

such that the genus of C is ≥ 2. Then any connected component of E1×A1
k
C

determines a connected finite étale covering C ′ → E1 of E1. Moreover, by
applying the Hurwitz formula to the compactification of the finite morphism
C ′ ↪→ E1 ×A1

k
C → C, it follows that the genus of C ′ is also ≥ 2. Thus, for

any curve X of type (1, r), where r > 0, we obtain a connected finite étale
covering X ′ → X of X such that the genus of X ′ is ≥ 2. This completes the
proof of (∗1).

In light of (∗1) and the fact that G1, G2 are infinite, we may assume,
without loss of generality, that G is the fundamental group of a curve of
genus ≥ 2.

Next, I claim that

(∗2) for every prime number l ̸= p, there exist finite quotients G1 � Q1,
G2 � Q2 such that l divides the order of Q1, Q2.

Indeed, suppose that l does not divide the order of any finite quotient of
G1. Now let N1 ( G1 be a proper normal open subgroup of G1. Note that

by assumption, we have Nab
1 ⊗ Zl = {1}. Write N

def
= N1 ×G2. Then since

the conjugation action of G/N ∼= G1/N1 × {1} on

Nab ⊗ Zl
∼= (Nab

1 ⊗ Zl)× (Gab
2 ⊗ Zl) ∼= {1} × (Gab

2 ⊗ Zl)

is trivial, by Proposition 2.4, below, we conclude that G/N = {1}, a con-
tradiction. This completes the proof of (∗2).

In light of the (∗2), by replacing G by the maximal pro-l quotient of
a suitable open subgroup of G for some l ̸= p, we may assume without
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loss of generality that G, G1, G2 are pro-l groups. Then since G is slim
[cf. Proposition 2.4, below], it follows that G1, G2 are nonabelian pro-l
groups, so dimFl

H1(G1,Fl) ≥ 2, dimFl
H1(G2,Fl) ≥ 2 [cf. [22], Theorem

7.8.1]. In particular, since we have an inclusion H1(G1,Fl) ⊗H1(G2,Fl) ⊆
H2(G,Fl), we obtain that dimFl

H2(G,Fl) ≥ 4. This contradicts the fact
that dimFl

H2(G,Fl) is either 0 or 1. [Indeed, H2(G,Fl) is isomorphic to the
second étale cohomology group H2

ét(X,Fl) of X [cf. [17], Proposition 1.1];
the dimension over Fl of this last cohomology group is either 0 or 1 [cf. [5],
Theorem 7.2.9 (ii); Proposition 7.2.10].] Therefore, G is indecomposable.

�

Remark 2.3. In the situation of Theorem 2.2, if X is an affine curve, then
ΠX is never finitely generated. [In fact, the maximal pro-p quotient of ΠX

is a free pro-p group of rank |k| — cf. [24], Theorem 12.] In particular, we
cannot apply Lemma 1.5 to Theorem 2.2.

The following result is well-known [cf., e.g., [25], Proposition 1.11; [20],
Propostion 1.4], but we review it briefly for the sake of completeness.

Proposition 2.4. Let k be an algebraically closed field of characteristic
p ≥ 0; l ̸= p a prime number; X a smooth curve of type (g, r) over k such
that the pair (g, r) satisfies 2g−2+r > 0 (respectively, (g, r) ̸= (0, 0), (1, 0))
if the characteristic of k is zero (respectively, positive). Then for any normal

open subgroup N of G
def
= ΠX such that the connected finite étale covering

XN → X corresponding to N has genus ≥ 2, the conjugation action of G/N
on Nab ⊗ Zl is faithful. In particular, ΠX , as well as its maximal pro-l

quotient Π
(l)
X , is slim.

Proof. The faithfulness portion of Proposition 2.4 follows immediately from
the argument given in [3], Lemma 1.14. The slimness portion of Proposition
2.4 follows formally from the faithfulness portion of Proposition 2.4. �

3. Indecomposability of Various Fundamental Groups

In this section, by applying the results of §1 and §2, we prove the inde-
composability of various fundamental groups. Moreover, by applying an in-
decomposability result, we prove the “scheme-theoretic indecomposability”
of the configuration space of a hyperbolic curve over a field of characteristic
zero [cf. Theorem 3.8].

Definition 3.1. Let k be a field of characteristic p ≥ 0; l ̸= p a prime
number. Then for the pair (k, l), we consider the following condition:

(∗lk) For any finite extension field k′ of k, the l-adic cyclotomic character

χk′ : Gk′ → Z×
l of k′ is nontrivial.

We shall say that k is l-cyclotomically full if the pair (k, l) satisfies the
condition (∗lk).
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Lemma 3.2. In the notation of Definition 3.1, the following hold:

(i) Let l, p be two distinct prime numbers; k ∈ {Q,Ql,Qp,Fp}. Suppose
that K is a finitely generated extension field of k. Then K is l-
cyclotomically full.

(ii) Let X be a smooth curve of type (g, r) over k such that the pair
(g, r) satisfies (g, r) ̸= (0, 0), (0, 1) (respectively, (g, r) ̸= (0, 0)) if
the characteristic of k is zero (respectively, positive); k an algebraic

closure of k. Write Xk
def
= X ×k k. Suppose, moreover, that k is

l-cyclotomically full. Then the image of the natural outer Galois
representation

ρk : Gk → Out(ΠXk
)

associated to the “homotopy exact sequence”

1 −−−−→ ΠXk
−−−−→ ΠX −−−−→ Gk −−−−→ 1

[cf. [23], EXPOSÉ IX, Théorème 6.1] is infinite, hence, in partic-
ular, nontrivial. If, moreover, (g, r) ̸= (0, 1), then the image of the
naturally induced pro-l outer Galois representation

ρ
(l)
k : Gk → Out(Π

(l)
Xk

)

is infinite, hence, in particular, nontrivial.

Proof. Assertion (i) follows from the various definitions involved.

We consider assertion (ii). First, suppose that (g, r) = (0, 1) [so p > 0].
Then observe that one verifies immediately — by considering a suitable
Artin-Schreier covering of X as in the proof of Theorem 2.2 over a suitable
finite extension of k and applying [8], Lemma 23, (i), (iii) — that the in-
finiteness [hence, in particular, the nontriviality] of the image of ρk follows
from the corresponding infiniteness in the case of g ≥ 1. Here, we note
that, although, in [8], Lemma 23, “∆” [in the notation of [8], Lemma 23] is
assumed to be topologically finitely generated, one verifies immediately that
this assumption is in fact unnecessary. Thus, in the remainder of the proof of
assertion (ii), we may assume without loss of generality that (g, r) ̸= (0, 1).
Next, observe that to verify the infiniteness of ρk, it suffices to verify the

infiniteness of ρ
(l)
k . Moreover, by replacing k by a suitable finite extension

of k, it suffices to verify that ρ
(l)
k is nontrivial. Suppose that ρ

(l)
k is trivial.

First, we assume that g ≥ 1. Write J(X) for the Jacobian variety of the
smooth compactification X of X, Tl(J(X)) for the l-adic Tate module of
J(X). Then it follows that the natural l-adic Galois representation

Gk → Aut(Tl(J(X)))

associated to J(X) is trivial. Then since, as is well-known [cf. the natural

isomorphisms
∧2g H1

ét(Xk,Zl)
∼→ H2g

ét (Xk,Zl)
∼→ Zl(−g) of Zl[Gk]-modules

discussed in [14], Remark 15.5; [13], Theorem 11.1, (a)], the determinant of
this representation is a positive power of the l-adic cyclotomic character of
k, we conclude that some positive power of the l-adic cyclotomic character
of k is trivial. But this contradicts to the condition (∗lk). Next, we assume
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that g = 0 and r ≥ 2. Then since r ≥ 2, we may identify Xk with an open

subscheme of A1
k
\ {0}. Thus, by considering the maximal pro-l abelian

quotient of ΠA1
k
\{0}, we conclude that the l-adic cyclotomic character of k is

trivial, a contradiction. [Here, we recall thatH1
ét(A1

k
\{0},Zl) ∼= Zl(−1).] �

Theorem 3.3. Let k be a field of characteristic p ≥ 0 such that Gk is
center-free and indecomposable; X a smooth curve of type (g, r) over k such
that the pair (g, r) satisfies 2g−2+r > 0 (respectively, (g, r) ̸= (0, 0), (1, 0))
if the characteristic of k is zero (respectively, positive). Suppose that there
exists a prime number l ̸= p such that k is l-cyclotomically full. Then ΠX

is center-free and indecomposable.

Proof. Let k be an algebraic closure of k; Xk
def
= X ×k k. Then by [23], EX-

POSÉ IX, Théorème 6.1, we have the following “homotopy exact sequence”

1 −−−−→ ΠXk
−−−−→ ΠX −−−−→ Gk −−−−→ 1.

In particular, since Gk and ΠXk
are center-free [cf. Proposition 2.4], it

follows that ΠX is also center-free. Here, we note that both Gk and ΠXk

are indecomposable [cf. Theorems 2.1, 2.2]. Thus, since the natural outer
Galois representation

Gk → Out(ΠXk
)

associated to the above sequence is nontrivial [cf. Lemma 3.2, (ii)], it follows
from Proposition 1.7, (i), that ΠX is also indecomposable. �

Theorem 3.4. Let n be a positive integer; k a field of characteristic zero
such that Gk is center-free and indecomposable; X a hyperbolic curve over
k; Xn the n-th configuration space associated to X. Suppose that either k
is algebraically closed, or l-cyclotomically full for a prime number l. Then
ΠXn is center-free and indecomposable.

Proof. First, we note that for n ≥ 1, any projection morphism Xn → Xn−1

of length one determines a natural exact sequence of profinite groups [cf.
[20], Proposition 2.2, (i)]

1 −−−−→ Π(Xn)x −−−−→ ΠXn −−−−→ ΠXn−1 −−−−→ 1

— where x is a geometric point of Xn−1; we write X0
def
= Spec(k); (Xn)x

denotes the fiber of Xn → Xn−1 over x. In particular, by applying induc-
tion on n, we conclude from Proposition 2.4 and Theorem 3.3 that ΠXn

is center-free. Here, we note that Π(Xn)x and ΠX1 are indecomposable [cf.
Theorems 2.1, 3.3]. Moreover, it is well-known that the natural outer Galois
representation

ΠXn−1 → Out(Π(Xn)x)

associated to the above exact sequence is nontrivial. [In the case where k
is an algebraically closed field, the above representation is, in fact, injective
— cf. [2], Theorem 1.] Thus, by induction on n, it follows from Proposition
1.7, (i), that ΠXn is indecomposable. �
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Corollary 3.5. Let n be a positive integer; k a Hilbertian field of character-
istic p ≥ 0; X a smooth curve of type (g, r) over k such that the pair (g, r)
satisfies 2g − 2 + r > 0 (respectively, (g, r) ̸= (0, 0), (1, 0)) if the charac-
teristic of k is zero (respectively, positive); Xn the n-th configuration space
associated to X. Suppose that there exists a prime number l ̸= p such that
k is l-cyclotomically full. Also, if p > 0, then we assume further that n = 1.
Then ΠXn is center-free and indecomposable.

Proof. These assertions follow immediately from Theorems 1.2, 3.3, 3.4. �

Remark 3.6. The center-freeness asserted in Theorems 3.3, 3.4 and Corol-
lary 3.5 holds even if one does not assume that k is l-cyclotomically full.

Corollary 3.7. Let n be a positive integer; k a field; X a smooth curve of
type (g, r) over k such that the pair (g, r) satisfies 2g−2+r > 0 (respectively,
(g, r) ̸= (0, 0), (1, 0)) if the characteristic of k is zero (respectively, positive);
Xn the n-th configuration space associated to X. Then the following hold:

(i) If k is a finitely generated transcendental extension field of Fp, then
ΠX is center-free and indecomposable.

(ii) If k is a finitely generated extension field of either Q or Qp, then
ΠXn is center-free and indecomposable.

Proof. First, we note that every field k which appears in Corollary 3.7 is l-
cyclotomically full for some prime number l [cf. Lemma 3.2, (i)]. Thus, in the
case that k is Hilbertian [cf. Corollary 1.4] (respectively, non-Hilbertian, i.e.,
p-adic local), the assertions follow from Corollary 3.5 (respectively, Propo-
sition 1.6 and Theorem 3.4). �

Theorem 3.8. Let n be a positive integer; k a field of characteristic zero;
X a hyperbolic curve over k; Xn the n-th configuration space associated to
X. Suppose that there exists an isomorphism of k-schemes

Xn
∼→ Y ×k Z

— where Y , Z are k-varieties [i.e., schemes that are of finite type, separated,
and geometrically integral over k]. Then it follows that either

Y ∼= Spec(k) or Z ∼= Spec(k).

Proof. We may assume that k is algebraically closed. Then to verify the
assertion, it suffices to show that either dim(Y ) = 0 or dim(Z) = 0. First,

we note that by the Künneth formula [cf. [23], EXPOSÉ XIII, Proposition
4.6], there exists an isomorphism of profinite groups

ΠXn

∼→ ΠY ×ΠZ .

Then since ΠXn is indecomposable by Theorem 3.4, we may without loss
of generality that ΠY = {1}. Now we fix a k-rational point z ∈ Z(k) of
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Z. Then we obtain a closed immersion Y
∼→ Y ×k {z} ↪→ Y ×k Z

∼→ Xn.
Write Y ′ → Y for the [surjective] morphism obtained by normalizing Y .
Here, if we assume that dim(Y ) ≥ 1, then the composite Y ′ → Y ↪→ Xn

is nonconstant. Thus, since Xn is of LFG-type [cf. [9], Definition 2.5] by
[9], Proposition 2.7, the image of the outer homomorphism ΠY ′ → ΠXn is
infinite — a contradiction. Therefore, we conclude that dim(Y ) = 0. �

4. Indecomposability of the Pro-l Grothendieck-Teichmüller
Group

In this section, we verify the indecomposability of the pro-l Grothendieck-
Teichmüller group GTl [cf. Theorem 4.4] as a consequence of a certain
anabelian result over finite fields [cf. [7], Remark 6, (iv)].

Definition 4.1. (cf. [18], Definition 1.11, (i)) Let l be a prime number; k an
algebraically closed field of characteristic zero; X the tripod P1

k \ {0, 1,∞}
over k; X2 the second configurartion space associated to X. Suppose that

Π1 ∈ {ΠX ,Π
(l)
X }. Write

Π2
def
=

{
ΠX2 , if Π1 = ΠX ,

Π
(l)
X2

, if Π1 = Π
(l)
X .

Then for n = 1, 2, we shall write

OutFC(Πn) ⊆ Out(Πn)

for the subgroup of Out(Πn) consisting of FC-admissible outomorphisms of
Πn [cf. [18], Definition 1.1, (ii)];

OutFCS(Πn) ⊆ OutFC(Πn)

for the subgroup of Out(Πn) consisting of FC-admissible outomorphisms of
Πn that commute with the outer modular symmetries [cf. [18], Definition
1.1, (vi)];

OutFC(Π1)
∆+ ⊆ OutFC(Π1)

for the image of OutFCS(Π2) via the natural injection OutFC(Π2) ↪→ OutFC(Π1)
induced by the first projection X2 → X [cf. [18], Definition 1.11, (i); [18],
Corollary 1.12, (ii); [18], Corollary 4.2, (i)]. We shall refer to

GT
def
= OutFC(ΠX)∆+ (respectively, GTl

def
= OutFC(Π

(l)
X )∆+)

as the Grothendieck-Teichmüller group (respectively, pro-l Grothendieck-
Teichmüller group).

Remark 4.2. GT as defined in Definition 4.1 coincides with the Grothendieck-
Teichmüller group as defined in more classical works [cf. [18], Remark
1.11.1].

The following lemma is well-known.

Lemma 4.3. Let l be a prime number. Then GT, GTl are slim.
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Proof. The asserted slimness follows immediately from the [pro-l] Grothendieck
Conjecture over number fields [i.e., [15], Theorem A, applied to a tripod over
a number field] and [11], Lemma 3.5. �

Theorem 4.4. Let l be a prime number. Then GTl is strongly indecompos-
able.

Proof. To verify the assertion, it suffices to show that for any open subgroup
U ⊆ GTl of GTl, U is indecomposable. Let F be a finite field of character-
istic ̸= l. Write ∆ for the maximal pro-l quotient of the étale fundamental
group of the tripod P1

F
\ {0, 1,∞} over F , where F is an algebraic closure

of F , and

ρ : GF → Out(∆)

for the pro-l outer Galois representation associated to P1
F \ {0, 1,∞}. It

follows immediately from the various definitions involved that G
def
= ρ(GF )

is contained in GTl ⊆ Out(∆). Thus, by replacing F by a suitable finite
extension of F , we may assume without loss of generality that G ⊆ U .
Moreover, since Out(∆) is almost pro-l [cf. [1], Corollary 7], by replacing F
by a suitable finite extension of F , we may assume without loss of generality

that ρ factors through the maximal pro-l quotient GF � G
(l)
F of GF . Here,

note that since G is infinite [cf. Lemma 3.2, (i), (ii)], we have G ∼= Zl.
Now suppose that we have an isomorphism of profinite groups U ∼= H1 ×

H2. In the following, we shall identify U and H1×H2 via this isomorphism.
Then I claim that it holds that

either G ∩H1 ̸= {1} or G ∩H2 ̸= {1}.
Indeed, suppose that G ∩ H1 = {1} and G ∩ H2 = {1}. In particular, it
follows that, for i = 1, 2, the composite

G ↪→ U = H1 × H2

pri� Hi

— where pri is i-th projection — is injective. Thus, if we write Ki ⊆ Hi

for the image of the above composite, we obtain that G
∼→ Ki [∼= Zl]. Here,

note that we have inclusions

G ⊆ K
def
= K1 × K2 ⊆ H1 × H2.

Thus, since K [∼= Zl × Zl] is abelian, we obtain that

K ⊆ ZGTl
(G) ↪→ Z×

l

— where “↪→” is induced by the morphism “degP” of [7], Definition 3.1,
which is injective by [7], Remark 6, (iv); [11], Lemma 3.5. In particular, by
considering a suitable open subgroup of K, we obtain that Zl × Zl

∼= Zl, a
contradiction. This completes the proof of the claim.

In light of the claim, we may assume without loss of generality that

G ∩H1 ̸= {1}.
Then since G∩H1 ⊆ G is a nontrivial closed subgroup of G ∼= Zl, it follows
that G∩H1 is open in G. Thus, by replacing F by a suitable finite extension,
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we may assume without loss of generality that G ⊆ H1. In particular, we
obtain that

H2 ⊆ ZGTl
(G) ↪→ Z×

l

— where “↪→” denotes the arrow “↪→” in the final display of the proof of the
above claim. Thus, it follows that H2 is abelian. On the other hand, since
H2 is center-free [cf. Lemma 4.3], we obtain that H2 = {1}. Therefore, we
conclude that U is indecomposable, as desired. �
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